时间:
2020
-
06
-
10
由于精密五金加工工艺特殊、零件形状复杂,表面存在金属材质纹理、加工残留纹路以及加工工艺的干扰,如切削液、油污、电镀、喷砂、氧化处理不良等。这样的金属加工件外观缺陷难以使用普通2D视觉检测系统进行高效检测,检测准确性和检测稳定性较差、容易误判。 基于深度学习和3D图像处理的精密加工件外观缺陷检测系统创新性结合深度学习以及3D图像处理办法,利用非接触式三维成像完成精密加工件的外观缺陷检测,解决行业当中常规人工检测手段检测效率低、漏检率高的问题,能大幅度提高生产效率,更好地控制生产质量,节约大量的检测劳动力与人力成本。 创新点一:使用3d图像深度信息,结合2d图像处理,与被测对象联合组成一一对应的缺陷空间,共同识别检测缺陷,增加缺陷识别检测的准确性; 创新点二:在实际工业生产场景上应用深度学习算法,提高缺陷识别准确性,简化调试...